Optimization and field use of a bioassay to monitor sea lice Lepeophtheirus salmonis sensitivity to emamectin benzoate
Overview
Abstract A bioassay for sea lice Lepeophtheirus salmonis sensitivity towards emamectin benzoate (EMB) was validated for field use. A probit regression model with natural responsiveness was used for the number of affected (moribund or dead) sea lice in bioassays involving different concentrations of EMB. Bioassay optimization included an evaluation of the inter-rater reliability of sea lice responsiveness to EMB and an evaluation of gender-related differences in susceptibility. Adoption of a set of bioassay response criteria improved the concordance (evaluated using the concordance correlation coefficient) between raters' assessments and the model estimation of EC50 values (the 'effective concentration' leading to a response of 50% of the lice not prone to natural response). An evaluation of gender-related differences in EMB susceptibility indicated that preadult stage female sea lice exhibited a significantly larger sensitivity towards EMB in 12 of 19 bioassays compared to preadult males. In order to evaluate sea lice sensitivity to EMB in eastern Canada, the intensive salmon farming area in the Bay of Fundy in southwestern New Brunswick was divided into 4 distinct regions based on industry health management practices and hydrographics. A total of 38 bioassays were completed from 2002 to 2005 using populations of preadult stage sea lice collected from Atlantic salmon Salmo salar farms within the 4 described regions. There was no significant overall effect of region or year on EC50 values; however, analysis of variance indicated a significant effect of time of year on EC50 values in 2002 and a potential effect in 2004 to 2005. Although the range of EC50 values obtained in this 3 yr study did not appear sufficient to affect current clinical success in the control of sea lice, the results suggest a seasonal- or temperature-associated variation in sensitivity to EMB. This will need to be considered if changes in EMB efficacy occur in the future. Properties
Additional details for this publication include:
Cross References
This publication is also available in the following databases:
|