Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms
Overview
Abstract Infection by parasitic sea lice is a substantial problem in industrial scale salmon farming. To control the problem, Norwegian salmonid farms are not permitted to exceed a threshold level of infection on their fish, and farms are required to monitor and report lice levels on a weekly basis to ensure compliance with the regulation. In the present study, we combine the monitoring data with a deterministic model for salmon lice population dynamics to estimate farm production of infectious lice stages. Furthermore, we use an empirical estimate of the relative risk of salmon lice transmission between farms, that depend on inter-farm distances, to estimate the external infection pressure at a farm site, i.e. the infection pressure from infective salmon lice of neighbouring farm origin. Finally, we test whether our estimates of infection pressure from neighbouring farms as well as internal within farm infection pressure, predicts subsequent development of infection in cohorts of farmed salmonids in their initial phase of marine production. We find that estimated external infection pressure is a main predictor of salmon lice population dynamics in newly stocked cohorts of salmonids. Our results emphasize the importance of keeping the production of infectious lice stages at low levels within local networks of salmon farms. Our model can easily be implemented for real time estimation of infection pressure at the national scale, utilizing the masses of data generated through the compulsory lice monitoring in salmon farms. The implementation of such a system should give the salmon industry greater predictability with respect to salmon lice infection levels, and aid the decision making process when the development of new farm sites are planned. Properties
Additional details for this publication include:
Cross References
This publication is also available in the following databases:
|