Hydrogen peroxide treatment in Atlantic salmon induces stress and detoxification response in a daily manner

Overview
TitleHydrogen peroxide treatment in Atlantic salmon induces stress and detoxification response in a daily manner
AuthorsVera LM, Migaud H
TypeJournal Article
Journal NameChronobiology international
VolumeN/A
IssueN/A
Year2016
Page(s)1-13
CitationVera LM, Migaud H. Hydrogen peroxide treatment in Atlantic salmon induces stress and detoxification response in a daily manner. Chronobiology international. 2016 Apr 8; 1-13.

Abstract

Daily variation in the absorption, metabolism and excretion of toxic substances will ultimately determine the actual concentration to which the cells and tissues are exposed. In aquaculture, Atlantic salmon (Salmo salar) can be frequently exposed to hydrogen peroxide (H2O2) to treat topical skin and gill infections, particularly in relation to parasitic infections (e.g. sea lice Lepeophtheirus salmonis and amoebic gill disease caused by Neoparamoeba perurans). It is well accepted that the time of administration influences pharmacodynamics and pharmacokinetics of drugs which in turn affects their efficacy and toxicity. Consequently, a better understanding of drug side effects as a function of time of day exposure would help to improve treatment efficacy and fish welfare. To this end, salmon were exposed to H2O2 (1500 mg/L) for 20 min at six different times of the day during a 24-h cycle and we investigated the time-dependent effects of exposure on physiological stress (glucose, lactate and cortisol) and antioxidant enzyme expression (gpx1, cat, Mn-sod and hsp70) in liver and gills. In addition, at each sampling point, 8 control fish were also sampled. Our results revealed that the time of administration of H2O2 caused significant differences in the induction of both physiological and oxidative stress responses. Glucose and lactate were higher in the treated fish during daytime whereas cortisol levels appeared to be systematically increased (>1000 ng/mL) after H2O2 treatment irrespective of exposure time, although differences with control levels were higher during the day. In liver, gene expression of antioxidant enzymes displayed daily rhythmicity in both treated and control groups and showed higher mRNA expression levels in salmon treated with H2O2 at ZT6 (6 h after lights onset). In gills, rhythmic expression was only found for gpx1 in the control fish and for hsp70 and Mn-sod in the treated groups. However, in the treated salmon, higher gene expression levels of all the investigated enzymes were also observed at ZT6-10. Clock gene expression showed rhythmicity only in the liver in accordance with the daily rhythm of enzyme expression observed in this tissue. Altogether, this study provides first evidence of chronotoxicity in Atlantic salmon treated with H2O2 and suggests increased sublethal toxic effect during the first half of the day. These results have direct relevance to the salmon and broader aquaculture industry by optimising the timing of treatment administration, opening the door to chronotherapy to treat fish diseases.

Author Details
Additional information about authors:
Details
1L M Vera
2H Migaud
Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN1525-6073
eISSN1525-6073
Publication Date2016 Apr 8
Journal AbbreviationChronobiol. Int.
LanguageEnglish
Language AbbrENG
Publication TypeJournal Article
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PMID:27058450