Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions

Overview
TitleSorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions
AuthorsSørensen L, Rogers E, Altin D, Salaberria I, Booth AM
TypeJournal Article
Journal NameEnvironmental pollution (Barking, Essex : 1987)
Volume258
IssueN/A
Year2019
Page(s)113844
CitationSørensen L, Rogers E, Altin D, Salaberria I, Booth AM. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environmental pollution (Barking, Essex : 1987). 2019 Dec 17; 258:113844.

Abstract

Organic chemical pollutants associated with microplastic (MP) may represent an alternative exposure route for these chemicals to marine biota. However, the bioavailability of MP-sorbed organic pollutants under conditions where co-exposure occurs from the same compounds dissolved in the water phase has rarely been studied experimentally, especially where pollutant concentrations in the two phases are well characterized. Importantly, higher concentrations of organic pollutants on ingested MP may be less bioavailable to aquatic organisms than the same chemicals present in dissolved form in the surrounding water. In the current study, the sorption kinetics of two model polycyclic aromatic hydrocarbons (PAHs; fluoranthene and phenanthrene) to MP particles in natural seawater at 10 and 20 °C were studied and the bioavailability of MP-sorbed PAHs to marine copepods investigated. Polyethylene (PE) and polystyrene (PS) microbeads with mean diameters ranging from 10 to 200 μm were used to identify the role of MP polymer type and size on sorption mechanisms. Additionally, temperature dependence of sorption was investigated. Results indicated that adsorption dominated at lower temperatures and for smaller MP (10 μm), while absorption was the prevailing process for larger MP (100 μm). Monolayer sorption dominated at lower PAH concentrations, while multilayer sorption dominated at higher concentrations. PE particles representing ingestible (10 μm) and non-ingestible (100 μm) MP for the marine copepod species Acartia tonsa and Calanus finmarchicus were used to investigate the availability and toxicity of MP-sorbed PAHs. Studies were conducted under co-exposure conditions where the PAHs were also present in the dissolved phase (C

Properties
Additional details for this publication include:
Property NameValue
Journal CountryEngland
Publication TypeJournal Article
Language Abbreng
LanguageEnglish
CopyrightCopyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOI10.1016/j.envpol.2019.113844
Elocation10.1016/j.envpol.2019.113844
PIIS0269-7491(19)34640-8
Journal AbbreviationEnviron. Pollut.
Publication Date2019 Dec 17
eISSN1873-6424
ISSN1873-6424
Publication ModelPrint-Electronic
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PMID:31874435