A new family of glutamate-gated chloride channels in parasitic sea louse Caligus rogercresseyi: A subunit refractory to activation by ivermectin is dominant in heteromeric assemblies

Overview
TitleA new family of glutamate-gated chloride channels in parasitic sea louse Caligus rogercresseyi: A subunit refractory to activation by ivermectin is dominant in heteromeric assemblies
AuthorsTribiños F, Cuevas P, Cornejo I, Sepúlveda FV, Cid LP
TypeJournal Article
Journal NamePLoS pathogens
Volume19
Issue3
Year2023
Page(s)e1011188
CitationTribiños F, Cuevas P, Cornejo I, Sepúlveda FV, Cid LP. A new family of glutamate-gated chloride channels in parasitic sea louse Caligus rogercresseyi: A subunit refractory to activation by ivermectin is dominant in heteromeric assemblies. PLoS pathogens. 2023 Mar 14; 19(3):e1011188.

Abstract

Sea louse ectoparasitosis is a major threat to fish aquaculture. Avermectins such as ivermectin and emamectin have been effectively used against sea louse infestation, but the emergence of resistance has limited their use. A better understanding of the molecular targets of avermectins is essential to the development of novel treatment strategies or new, more effective drugs. Avermectins are known to act by inhibiting neurotransmission through allosteric activation of glutamate-gated chloride channels (GluCls). We have investigated the GluCl subunit present in Caligus rogercresseyi, a sea louse affecting aquaculture in the Southern hemisphere. We identify four new subunits, CrGluCl-B to CrGluCl-E, and characterise them functionally. CrGluCl-A (previously reported as CrGluClα), CrGluCl-B and CrGluCl-C all function as glutamate channel receptors with different sensitivities to the agonist, but in contrast to subunit -A and -C, CrGluCl-B is not activated by ivermectin but is rather antagonised by the drug. CrGluCl-D channel appears active in the absence of any stimulation by glutamate or ivermectin and CrGluCl-E does not exhibit any activity. Notably, the expression of CrGluCl-B with either -A or -C subunits gives rise to receptors unresponsive to ivermectin and showing altered response to glutamate, suggesting that coexpression has led to the preferential formation of heteromers to which the presence of CrGluCl-B confers the property of ivermectin-activation refractoriness. Furthermore, there was evidence for heteromer formation with novel properties only when coexpressing pairs E/C and D/B CrGluCl subtypes. Site-directed mutagenesis shows that three transmembrane domain residues contribute to the lack of activation by ivermectin, most crucially Gln 15' in M2, with mutation Q15'T (the residue present in ivermectin-activated subunits A and C) conferring ivermectin activation to CrGluCl-B. The differential response to avermectin of these Caligus rogercresseyi GluClsubunits, which are highly conserved in the Northern hemisphere sea louse Lepeophtheirus salmonis, could have an influence on the response of these parasites to treatment with macrocyclic lactones. They could serve as molecular markers to assess susceptibility to existing treatments and might be useful molecular targets in the search for novel antiparasitic drugs.

Properties
Additional details for this publication include:
Property NameValue
Journal CountryUnited States
Publication TypeJournal Article
Language Abbreng
LanguageEnglish
CopyrightCopyright: © 2023 Tribiños et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Elocation10.1371/journal.ppat.1011188
DOI10.1371/journal.ppat.1011188
Journal AbbreviationPLoS Pathog
Publication Date2023 Mar 14
eISSN1553-7374
ISSN1553-7374
Publication ModelPrint-Electronic
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PMID:36917600