Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon

Overview
TitleKeratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon
AuthorsSalisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D
TypeJournal Article
Journal NameBMC biology
Volume22
Issue1
Year2024
Page(s)160
CitationSalisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC biology. 2024 Jul 29; 22(1):160.

Abstract

BACKGROUND
Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown.

RESULTS
We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite.

CONCLUSIONS
Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.

Author Details
Additional information about authors:
Details
1S J Salisbury
2R Ruiz Daniels
3S J Monaghan
4J E Bron
5P R Villamayor
6O Gervais
7M D Fast
8L Sveen
9R D Houston
10N Robinson
11D Robledo
Properties
Additional details for this publication include:
Property NameValue
Journal CountryEngland
Publication TypeJournal Article
Language Abbreng
LanguageEnglish
Copyright© 2024. The Author(s).
Publication ModelElectronic
DOI10.1186/s12915-024-01952-8
Elocation10.1186/s12915-024-01952-8
PII160
Journal AbbreviationBMC Biol
Publication Date2024 Jul 29
eISSN1741-7007
ISSN1741-7007
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PMID:39075472