Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis

Overview
TitleComparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis
AuthorsSutherland BJ, Koczka KW, Yasuike M, Jantzen SG, Yazawa R, Koop BF, Jones SR
TypeJournal Article
Journal NameBMC genomics
Volume15
IssueN/A
Year2014
Page(s)200
CitationSutherland BJ, Koczka KW, Yasuike M, Jantzen SG, Yazawa R, Koop BF, Jones SR. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis. BMC genomics. 2014; 15:200.

Abstract

BACKGROUND
Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection.

RESULTS
In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon.

CONCLUSIONS
Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice.

Author Details
Additional information about authors:
Details
1Ben J G Sutherland
2Kim W Koczka
3Motoshige Yasuike
4Stuart G Jantzen
5Ryosuke Yazawa
6Ben F Koop
7Simon R M Jones
Properties
Additional details for this publication include:
Property NameValue
Publication ModelElectronic
ISSN1471-2164
eISSN1471-2164
Publication Date2014
Journal AbbreviationBMC Genomics
DOI10.1186/1471-2164-15-200
Elocation10.1186/1471-2164-15-200
Publication TypeJournal Article
Journal CountryEngland
LanguageEnglish
Language Abbreng
Publication TypeResearch Support, Non-U.S. Gov't
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PMID:24628956