Habitat temperature is an important determinant of cholesterol contents in copepods

Overview
TitleHabitat temperature is an important determinant of cholesterol contents in copepods
AuthorsHassett RP, Crockett EL
TypeComparative Study
Media TitleThe Journal of experimental biology
Volume212
IssuePt 1
Year2009
Page(s)71-7
CitationHassett RP, Crockett EL. Habitat temperature is an important determinant of cholesterol contents in copepods. The Journal of experimental biology. 2009 Jan; 212(Pt 1):71-7.

Abstract

Effects of habitat and acclimation temperature on cholesterol contents were examined in oceanic and inshore species of copepods. The cholesterol content of five species of thermally acclimated copepods was determined, and nine species (representing six families) were sampled to assess the role of habitat temperature. The species selected have maximum habitat temperatures (and temperature tolerances) that vary at least twofold. Levels of dietary cholesterol required to achieve maximum growth were also studied at different acclimation temperatures in a eurythermal copepod. Both eggs and copepodites of Calanus finmarchicus had higher cholesterol levels at the warm acclimation temperature (16 degrees C) than at the cooler temperature (6 degrees C). Neither Acartia tonsa, Acartia hudsonica, Temora longicornis nor Eurytemora affinis altered cholesterol contents with acclimation temperature. Maximum growth rates were achieved at fourfold higher concentrations of dietary cholesterol in warm-acclimated Eurytemora affinis than in cold-acclimated animals. The most consistent trend is the positive relationship between cholesterol content and habitat temperature. Species residing in warmer habitats (e.g. Centropages typicus, Eurytemora affinis) had approximately twice the cholesterol of species living in colder waters (e.g. Calanus glacialis, Euchaeta norvegica). A similar pattern was observed for comparisons of species within genera (Calanus, Acartia and Centropages), with the species abundant at lower latitudes having more cholesterol than the northern congener. These data indicate that habitat temperature is an important determinant of cholesterol content, and cholesterol endows membranes with the stability required for a range of body temperatures.

Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint
ISSN0022-0949
pISSN0022-0949
Publication Date2009 Jan
Journal AbbreviationJ. Exp. Biol.
DOI10.1242/jeb.020552
Elocation10.1242/jeb.020552
LanguageEnglish
Language Abbreng
Publication TypeComparative Study
Journal CountryEngland
Publication TypeJournal Article
Publication TypeResearch Support, N.I.H., Extramural
Publication TypeResearch Support, U.S. Gov't, Non-P.H.S.
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PMID:19088212