The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea)
Overview
Abstract Copepoda (Calanus finmarchicus n = 1,722, Paraeuchaeta norvegica n = 1,955), Hyperiidae (n = 3,019), Euphausiacea (Meganyctiphanes norvegica n = 4,780), and the fishes Maurolicus muelleri (n = 500) and Pollachius virens (n = 33) were collected in the Norwegian Deep (northern North Sea) during summer 2001 to examine the importance of pelagic invertebrates and vertebrates as hosts of Anisakis simplex and their roles in the transfer of this nematode to its final hosts (Cetaceans). Third stage larvae (L3) of A. simplex were found in P. norvegica, M. muelleri and P. virens. The prevalence of A. simplex in dissected P. norvegica was 0.26%, with an intensity of 1. Prevalences in M. muelleri and P. virens were 49.6% and 100.0%, with mean intensities of 1.1-2.6 (total fish length >or=6.0-7.2) and 193.6, respectively. All specimens of C. finmarchicus and M. norvegica examined were free of anisakid nematode species and no other parasites were detected. P. norvegica, which harboured the third stage larvae, is the obligatory first intermediate host of A. simplex in the investigated area. Though there was no apparent development of larvae in M. muelleri, this fish can be considered as the obligatory second intermediate host of A. simplex in the Norwegian Deep. However, it is unlikely that the larva from P. norvegica can be successfully transmitted into the cetacean or pinniped final hosts, where they reach the adult stage. An additional growth phase and a second intermediate host is the next phase in the life cycle. Larger predators such as P. virens serve as paratenic hosts, accumulating the already infective stage from M. muelleri. The oceanic life cycle of A. simplex in the Norwegian Deep is very different in terms of hosts and proposed life cycle patterns of A. simplex from other regions, involving only a few intermediate hosts. In contrast to earlier suggestions, euphausiids have no importance at all for the successful transmission of A. simplex in the Norwegian Deep. This demonstrates that this nematode is able to select definite host species depending on the locality, apparently having a very low level of host specificity. This could explain the wide range of different hosts that have been recorded for this species, and can be seen as the reason for the success of this parasite in reaching its marine mammal final hosts in an oceanic environment. Properties
Additional details for this publication include:
Cross References
This publication is also available in the following databases:
|