Stable Associations Masked by Temporal Variability in the Marine Copepod Microbiome

Overview
TitleStable Associations Masked by Temporal Variability in the Marine Copepod Microbiome
AuthorsMoisander PH, Sexton AD, Daley MC
TypeJournal Article
Journal NamePloS one
Volume10
Issue9
Year2015
Page(s)e0138967
CitationMoisander PH, Sexton AD, Daley MC. Stable Associations Masked by Temporal Variability in the Marine Copepod Microbiome. PloS one. 2015; 10(9):e0138967.

Abstract

Copepod-bacteria interactions include permanent and transient epi- and endobiotic associations that may play roles in copepod health, transfer of elements in the food web, and biogeochemical cycling. Microbiomes of three temperate copepod species (Acartia longiremis, Centropages hamatus, and Calanus finmarchicus) from the Gulf of Maine were investigated during the early summer season using high throughput amplicon sequencing. The most prominent stable component of the microbiome included several taxa within Gammaproteobacteria, with Pseudoalteromonas spp. especially abundant across copepod species. These Gammaproteobacteria appear to be promoted by the copepod association, likely benefitting from nutrient enriched microenvironments on copepods, and forming a more important part of the copepod-associated community than Vibrio spp. during the cold-water season in this temperate system. Taxon-specific associations included an elevated relative abundance of Piscirickettsiaceae and Colwelliaceae on Calanus, and Marinomonas sp. in Centropages. The communities in full and voided gut copepods had distinct characteristics, thus the presence of a food-associated microbiome was evident, including higher abundance of Rhodobacteraceae and chloroplast sequences in the transient communities. The observed variability was partially explained by collection date that may be linked to factors such as variable time since molting, gender differences, and changes in food availability and type over the study period. While some taxon-specific and stable associations were identified, temporal changes in environmental conditions, including food type, appear to be key in controlling the composition of bacterial communities associated with copepods in this temperate coastal system during the early summer.

Properties
Additional details for this publication include:
Property NameValue
Publication ModelElectronic-eCollection
ISSN1932-6203
eISSN1932-6203
Publication Date2015
Journal AbbreviationPLoS ONE
DOI10.1371/journal.pone.0138967
Elocation10.1371/journal.pone.0138967
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryUnited States
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PMID:26393930